Executive Function and Decision Making Capacity

Jason E. Schillerstrom, M.D.
Assistant Professor
UTHSCSA

Disclosure

The presenter has no relevant financial conflicts of interest regarding this presentation.

The Executive Interview (EXIT25) was developed at UTHSCSA by the presenter's direct supervisor.

Executive Function

- DSM IV: The ability to think abstractly and to plan, initiate, sequence, monitor, and inhibit complex goal directed behavior
- That set of cognitive processes that allow one to behave independent of the environment instead of having behaviors mediated by the environment.
- Examples:
 - Cooking
 - Driving
 - Riding a bike
Prefrontal Circuits

Psychiatric Illness and Executive Impairment
- Dementia
- Depression
- Bipolar Disorder
- ADHD
- Substance Disorders
- Schizophrenia
- Personality Disorders

Medical Illness and Executive Impairment
- Peripheral arterial disease
- Hypertension
- Diabetes
- COPD
- Obstructive sleep apnea
- Congestive heart failure
- HIV
- Lung cancer
- ESRD (dialysis)
Executive Function Measures

- Wisconsin Card Sort Task
- Trailmaking Test Part B
- Verbal fluency tasks
- Stroop Test
- Tower of London/Hanoi
- The Executive Interview
- Clock drawing tasks (CLOX1)

The Executive Interview (EXIT25)

- 25 item bedside scale
- Items derived from frontal lobe sequelae
- 15 minutes, lay interviewers
- Scored 0-50, higher scores worse
- 15/50 best discriminates healthy elderly from demented subjects (ROC, c=.93)
- Normal young adults rarely >07/50

Executive Function and Decision Making Capacity in Elders with Alzheimer’s or Parkinson’s Disease

- LS1: The capacity to evidence a treatment choice
- LS2: The capacity to make the reasonable treatment choice (when the alternative is manifestly unreasonable)
- LS3: The capacity to appreciate the emotional, cognitive, and personal consequences of a treatment choice
- LS4: The capacity to provide rational reasons for a treatment choice
- LS5: The capacity to understand the treatment situation and choices
Neuropsych Battery

- Orientation: orientation items of the Wechsler Memory Scale-Revised (WMS-R)
- Attention/concentration: Mental Control and Digit Span subtests of the WMS-R, and the Attention subscale of the DRS.
- Executive function: Boston Naming Test (BNT)
- Receptive language: Simple Auditory Comprehension test (SAC), Token Test
- Visuoperceptual skills: Construction subscale of the DRS.
- Memory: Logical Memory I subscale of the WMS-R, the Memory subscale of the DRS, Logical Memory II subscale of the WMS-R.
- Executive function: Executive Interview (EXIT-25), the Initiation/Persuasion subscale of the DRS, Trails A of the Halstead-Reitan battery, Trails B, Controlled Oral Word Fluency (COWF) and Animal Naming.
- Verbal conceptconservation and perseveration: the Similarities subscale of the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the Conceptualization subscale of the DRS.
- Judgment: Comprehension subscale of the WAIS-R.
- Mood: Geriatric Depression Scale (GDS).

Decision Making Capacity and Alzheimer’s Disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Orientation</th>
<th>Attention/concentration</th>
<th>Executive function</th>
<th>Memory</th>
<th>Judgment</th>
<th>Mood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer</td>
<td>0.96 0.957 0.84 0.75</td>
<td>0.76 0.70 0.61 0.54</td>
</tr>
</tbody>
</table>

Decision Making Capacity and Parkinson’s Disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Orientation</th>
<th>Attention/concentration</th>
<th>Executive function</th>
<th>Memory</th>
<th>Judgment</th>
<th>Mood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson</td>
<td>0.96 0.957 0.84 0.75</td>
<td>0.76 0.70 0.61 0.54</td>
</tr>
</tbody>
</table>
Executive Function and Decision Making Capacity in Elderly Retirees

- N=105 elders living in a continuing care retirement community were administered:
 - Hopkins Competency Assessment Test (HCAT)
 - The Executive Interview (EXIT25)
 - Mini Mental State Exam (MMSE)

Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Step</th>
<th>Multiple R²</th>
<th>R² change</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCAT 1 (12th grade level)</td>
<td>1</td>
<td>.63</td>
<td>.63</td>
<td>151.32</td>
<td><.001</td>
</tr>
<tr>
<td>EXIT25</td>
<td>1</td>
<td>.67</td>
<td>.67</td>
<td>177.46</td>
<td><.001</td>
</tr>
<tr>
<td>MMSE</td>
<td>2</td>
<td>.71</td>
<td>.08</td>
<td>22.56</td>
<td><.001</td>
</tr>
<tr>
<td>Age</td>
<td>3</td>
<td>.72</td>
<td>.02</td>
<td>4.89</td>
<td>.03</td>
</tr>
<tr>
<td>Education</td>
<td>4</td>
<td>.73</td>
<td>.01</td>
<td>3.44</td>
<td>ns</td>
</tr>
</tbody>
</table>

Executive Function and Decision Making Capacity in Inpatients seen for Neuropsychiatric Consultation

- N=31 referrals were administered a decision making capacity evaluation blind to a neuropsych battery consisting of:
 - HCAT
 - EXIT25
 - Trailmaking Part A and B
 - MMSE
Executive Function and Capacity to Consent to a Minimally Invasive Research Protocol

- N = 21 subjects were administered the MacCAT to assess decision-making capacity to participate in a minimally invasive research protocol.
- Subjects were administered the EXIT25, CLOX1, CLOX2, and the MMSE.
- A subject was considered to have failed the MacCAT if they failed one or more of the following categories:
 - understanding (<4),
 - reasoning (<3),
 - appreciation of disorder and treatment benefit (0 for each).
Results

Demographic and cognitive test means in patients passing and failing the MacCAT.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pass MacCAT (n=11)</th>
<th>Fail MacCAT (n=10)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>61.3 (5.7)</td>
<td>68.6 (10.7)</td>
<td>p = .03</td>
</tr>
<tr>
<td>Education</td>
<td>13.9 (2.5)</td>
<td>11.7 (2.2)</td>
<td>p = .02</td>
</tr>
<tr>
<td>EXIT25</td>
<td>11.5 (4.1)</td>
<td>15.5 (5.0)</td>
<td>p = .03</td>
</tr>
<tr>
<td>CLOX1</td>
<td>11.5 (2.3)</td>
<td>10.4 (2.6)</td>
<td>p = .15</td>
</tr>
<tr>
<td>CLOX2</td>
<td>13.1 (1.3)</td>
<td>13.4 (0.7)</td>
<td>p = .26</td>
</tr>
<tr>
<td>MMSE</td>
<td>28.8 (1.5)</td>
<td>27.9 (1.6)</td>
<td>p = .10</td>
</tr>
</tbody>
</table>

Results

TABLE 1. Spearman Correlation Coefficients for Modified MacCAT T Performance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Understanding</th>
<th>Appreciation</th>
<th>Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.45</td>
<td>-0.19</td>
<td>-0.44</td>
</tr>
<tr>
<td>Education</td>
<td>0.04</td>
<td>0.09</td>
<td>0.77</td>
</tr>
<tr>
<td>EXIT25</td>
<td>-0.46</td>
<td>-0.18</td>
<td>-0.56</td>
</tr>
<tr>
<td>CLOX1</td>
<td>0.25</td>
<td>-0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>CLOX2</td>
<td>-0.12</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.45</td>
<td>-0.02</td>
<td>0.59</td>
</tr>
</tbody>
</table>

*p < .01 **p < .05 Age = 19; Education = 20; EXIT25, CLOX1, CLOX2, and MMSE = 21. EXIT25: Executive Interview; CLOX: Executive Clock Drawing Test; MMSE: Mini-Mental State Examination.

MMSE and MacCAT

![Graph showing MMSE and MacCAT test results]

N=30 inhaler naïve elders were scored on their ability to learn how to use a metered dose inhaler for COPD.

<table>
<thead>
<tr>
<th>Item</th>
<th>MDI score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No breath heard</td>
<td>10</td>
</tr>
<tr>
<td>No breath heard</td>
<td>8</td>
</tr>
<tr>
<td>Actuates late but full before exhalation</td>
<td>7</td>
</tr>
<tr>
<td>Actuates too late, too early</td>
<td>6</td>
</tr>
<tr>
<td>Poor inspiratory effort with late/early actuation</td>
<td>4</td>
</tr>
<tr>
<td>Fingers poorer coordination of inspiratory actuation</td>
<td>3</td>
</tr>
<tr>
<td>Fingers too much or no response</td>
<td>2</td>
</tr>
<tr>
<td>Unable also able to use the inhaler</td>
<td>1</td>
</tr>
<tr>
<td>No idea what to do with the inhaler</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Correlation between the MDI score and MMSE and EXIT25 on days 1 and 2

<table>
<thead>
<tr>
<th>MDI score</th>
<th>MMSE</th>
<th>EXIT25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0.482</td>
<td>-0.061</td>
</tr>
<tr>
<td>Day 2</td>
<td>0.549</td>
<td>-0.072</td>
</tr>
</tbody>
</table>

Capacity to Learn How to Use Inhaler

Table 4. Threshold relationship between day 2 Turbhaler technique (competent/incompetent threshold) and MMSE (23/24 threshold) and EXIT25 (14/15 threshold)

<table>
<thead>
<tr>
<th></th>
<th>Competent</th>
<th>Incompetent</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE > 23</td>
<td>21</td>
<td>3</td>
<td><0.01</td>
</tr>
<tr>
<td>MMSE < 24</td>
<td>0</td>
<td>6</td>
<td><0.01</td>
</tr>
<tr>
<td>EXIT25 < 15</td>
<td>21</td>
<td>0</td>
<td><0.01</td>
</tr>
<tr>
<td>EXIT25 > 15</td>
<td>0</td>
<td>9</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Dilemmas

- The prevalence of executive function impairment as measured by the EXIT25 is high. How much impaired decision making can society bear?
- Not all executive measures are equally sensitive to decision making capacity.
- Executive function and decision making capacity are rarely used as outcome measures in clinical trials.

EXIT25 Failure Rates

- 64% of elders presenting to an academic geriatric psychiatry clinic
- 38% of healthy elderly retirees
- 62% of medical/surgical inpatients referred for psychiatric consultation
- 42% of consecutive medical inpatients
- 28% of elders with cancer referred for radiotherapy
Future Directions

- Is executive function (EXIT25) sensitive to an underlying decision making capacity construct?
- Which executive domains best predict decision making capacity? Are there neuroanatomic correlates?
- What EXIT25 threshold best predicts decision making capacity?
- Does improving executive function improve decision making capacity? How do we do that?